I. Laws, Principles, and Theorems

Recognize these by name, know the main ideas involved, the kind of situations where applicable, etc.

The law of conservation of energy The work-kinetic energy theorem Newton's law of gravity

II. Other Concepts, Terms, etc.

Define them, know what they mean, their applications, etc. (Sometimes we define things by use of equations, in which case you will need to know what the equations mean and how to apply them.)

Hooke's law

Conservation of mechanical energy

Kinetic energy	$J = kg m^2/s^2$
Gravitational potential energy	Work
Elastic potential energy	Conservative and non-conservative forces
Dot (scalar) products	Power
Dissipative forces	Watt = W = J/s
Angular position, velocity, acceleration	Simple pendulum
Angular frequency	System/Environment
Physical pendulum	Simple harmonic motion (SHM)
Simple harmonic oscillator (SHO)	Frequency
Thermal energy	Phase constant
Elastic collisions	Period
Spring constant	Amplitude
Sinusoidal motion	Damping
Gravitational constant.	Integrals (in context of work and impulse)
Uniform and non-uniform circular motion	Internal vs. external forces on a system

III. Other Topics for Discussion, Problem-solving, etc.

Similarity relations between linear and rotational motion variables and equations. Centripetal and tangential acceleration (in context of circular motion). Arbitrary-ness of reference point for gravitational potential energy. Energy conservation applied to gravitational and spring systems. How can we tell if a force is conservative? How is work represented/interpreted graphically? Potential energy curves (turning points, equilibrium positions) Work done by a varying force - e.g., stretching or compressing a spring. Relation of conservative forces to potential energy. Conservation of energy problems when frictional forces (or other non-conservative forces) are present. Perfectly elastic vs. perfectly inelastic collisions (and what lies in between). Rotational motion described as vectors! The various applications of the right hand rule! Know how to compute dot products. Differential equation describing the motion of a SHO ($d^2x/dx^2 = -\omega^2 x$) AND its solution (how do you verify the solution actually works in the differential equation?) Qualitatively, what is damping in an oscillating system? What is a "driven" oscillator? Resonance? How is g related to G?

Know how to take partial derivatives and perform uncertainty calculations with them.

Show the stuff on the other two review sheets!

IV. Equations

Know how to <u>apply them</u> to above cases! I will provide you with all necessary equations except those on the *Know Sheet.* Make sure you know the notation (symbols) and the units for the physical quantities we've discussed!